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In this paper we introduce a weighted complex networks model to investigate and recognize structures of
patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional
vector which however is insufficient to express the structural information. Thus, a number of methods are
developed to extract the structural information, such as different feature extraction algorithms used in pre-
processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed
to a weighted complex network, whose topology represents the structure of that pattern. Based upon the
training samples, we get several prototypal complex networks which could stand for the general structural
characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown
patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for
real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it
remains constant insensitive to the amount of training samples. We have discussed the interesting properties of
the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in
which we could compare the structural difference between each category. We have visualized these prototypal
networks to show that their topology indeed represents the common characteristics of patterns. We have also
shown that the asymmetric strength distribution in these prototypal networks brings high robustness for rec-
ognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in
object recognition as well.
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In spatial cognition of biologic neuronal systems, an ob-
ject possesses many properties, such as color, size, bright-
ness, and structures, etc. The main characteristic of an object
is represented by its structures which is the primary reason to
classify one object from other objects. The structure of an
object is expressed as the description of the spatial arrange-
ments and correlations among its individual parts �1–3�. It
has been hypothesized that the aim of cortical information
processing is to transform the highly redundant inputs into a
higher-order representation which reveals the structure �4,5�.

In the usual pattern recognition models, such as artificial
neural networks �6–8�, each pattern is attributed to a high
dimensional vector which is often constructed by a row-by-
row scan in the pixel box. Such expression is insufficient in
expressing the structural information of each pattern, since
the arrangements and correlations between the pixel points is
not manifested in the vector. The synaptic matrix treats the
computation of each dimension separately, and the spatial
arrangements take no effect in computation. Thus, in order to
overcome such shortcoming, a number of different methods
are developed to extract the structural information within the
raw inputs, such as feature extraction algorithms �9–11� used
in preprocessing steps, or the local receptive fields in convo-
lutional networks �12–14�. Different strategies are used in
those methods. For example, a range of feature extraction
algorithms are based upon sparse-coding representation
which is motivated by evidence that sensory coding in the
early stages of cortical information processing produces
sparse representations. The local receptive fields in convolu-

tional networks are focused on the local connections to ex-
tract elementary features such as oriented edges, end points,
or corners. Since the spatial correlations of each individual
part of an object are strongly involved in the integration of
information, from micro to macro, and vice versa, there are
some papers �15–17� that indicate complex networks �18,19�
might be used in image characterization and classification in
terms of the topology within the networks.

The idea of complex networks has been widely used in
many different fields in the last decades. Complex networks
intend to study the coupling architecture between different
elements in a system and also the statistical behavior of that
system. In complex networks, each element is treated as a
vertex �or node, or point�, and their interactions and correla-
tions are represented as their connections �or links�. For un-
weighted complex networks, the adjacency matrix describes
the connections of vertexes, where 1 stands for a connection
between two vertexes, and 0 stands for no connections. Re-
cently, there is an increasing care to study weighted complex
networks �18,20,21�, i.e., networks in which a real value is
associated with each connection and the value describes the
strength of that connection. This is most important in many
cases since a complex topology is often associated with a
large heterogeneity in the capacity and intensity of the con-
nections, and unweighted complex networks are insufficient
in describing such interactions. For example, the diversity of
the predator-prey interactions in food chains is essential to
the stability of the ecosystems �22,23�. In social networks,
the strength of social contacts in order to characterize the
correspondences is important to understand the relationship
between people �24,25�. In many transportation networks,
from the number of passengers in the airline traffic network
�26� to the unequal traffic on the Internet �27�, they are cru-*jk�jigger@xmu.edu.cn
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cial quantities to study the topology and functions of these
networks. Different capacities in the neuronal networks to
transmit electric signals is the key to study how the neural
system is able to process information. To study those net-
works, only weighted complex networks are capable to de-
scribe the diversity in the connections. For a weighted com-
plex network, the adjacency matrix is now extended to
weights matrix, the value of the weight is set to describe the
strength of each different connection.

In our model, each pattern is attributed to a weighted
complex network whose topology could represent its struc-
ture. The weighted complex network should express the spa-
tial correlation between each individual pixel site to state the
structure of an object. Usually, for one category, it has mul-
tiple patterns in the training database which share general
structural characteristic across huge variations. Then we need
to construct a prototype, which is also a weighted complex
network here, for each individual category, and it could rep-
resent the general structural information of patterns in this
category. In object recognition, it is called categorization �1�.
So when an unknown pattern is presented, it would be de-
scribed as a weighted complex network, and it is compared
with the prototypal networks of different categories. If it is
most similar with one definite prototypal network, then it is
considered to be a pattern in that relative category.

So the key point is how to construct the weighted com-
plex network for each pattern and each category, and how to
compare the structural difference between two networks. For
simplicity, here we consider the black and white patterns
with binary pixel value, which are the most commonly used
patterns in pattern recognition models, such as handwritten
digits or print characters. As each plane pattern is centered

in k�k pixel box, thereby its pixel matrix is T̂= �Tx.yx
=1, . . . ,k ;y=1, . . . ,k� with Tx,y = �1 where �1 stand for the

black and white pixels, respectively. In each pattern T̂, the
structural information contains two parts in the pixel sites:
The pixel value Tx,y and the relative pixel coordinates �x ,y�.
The regular treatment in pattern recognition is to transform
the pixel matrix into a high-dimensional vector by row-by-
row scanning, v� = �vi=Tx,y � i=k�x−1�+y�. The pixel value of
each pixel site is preserved, and the pixel coordinates are
reordered by row-by-row scanning in such expression. The
spatial information of each pattern is reparametrized here.
Although the spatial information is maintained in such ex-
pression, the reordering does not consider the spatial corre-
lations of the pixel sites, and the spatial arrangements of each
pattern take no effect in computation since the computation
of each dimension is separate. So this vector expression is
insufficient in expressing the structural information of pat-
terns. Figure 1�a� shows a pattern �digit 6� in the pixel box.
The pixels with Tx,y =1 are denoted by solid dots there, while
the pixels with Tx,y =−1 are denoted by the open dots. The
pixel value and relative pixel coordinates together express
the spatial arrangements of that pattern.

Our idea is to construct a weighted complex network to
express patterns, and the pixel value and pixel coordinates
of each pixel site and their spatial correlations are together
considered. Each pixel site is attributed to a vertex in the

complex networks. In the complex networks, each vertex
contains a color value ci which equals the pixel value in the
relative pixel site. The connections and connection weights
between vertexes is constructed to reveal the spatial arrange-
ments of pixel sites according to their coordinates. Since
there are k�k pixel sites, thus there are k�k vertexes in
the complex networks. The relative k2�k2 weights matrix
ŵ= �wi,j � i=k�x1−1�+y1 , j=k�x2−1�+y2� is constructed as
follows:

wi,j = �Tx1,y1
� Tx2,y2, �x1 − x2� + �y1 − y2� � � ,

0, �x1 − x2� + �y1 − y2� � � ,

0, �x1 − x2� + �y1 − y2� = 0.
	 �1�

Figures 1�a� and 1�b� show how the weighted complex
network is constructed according to the pixel value and pixel
coordinates of a definite pattern. Through the definition in
�1�, the spatial correlations among two different pixel sites i
and j, is described by their connection weights according to
their pixel value and pixel coordinates now. Such represen-
tation will remain the structural information of patterns in the
topology of the complex networks.

For this complex network, the number of the vertexes is
M1=k2, and since it is a symmetric complex network without
self-connection �wi,j =0 if i= j�, the number of connections in
this network is M2= 1

2k2�k2−1�. According to the weights
matrix, we can get the maximum number of nonzero connec-
tions of a vertex, Pmax=4�+4
i=1

�−1��− i�, and the minimum
number of nonzero connections of a vertex, Pmin=2�
+
i=1

�−1��− i�. So the number of nonzero connections of a ver-
tex P is

1
2�2 + 3

2� � P � 2�2 + 2� . �2�

The number of nonzero connections in this complex network

is M2�= 1
2k2P̄. As it shows in formula �2�, the nonzero con-

nection of a vertex is restricted by the spatial parameter �, so
if ��k2 the connections in the complex networks would be
very sparse. For example, �=6 is the nonzero connection of

a vertex 27� P�84 and k2=28�28=784, P̄�k2−1�k2

and the nonzero connections in the complex network is M2�
�M2. Later, it shows that �=6 is correct for the optimal
parameter for recognition. Since only the nonzero connec-
tions in the complex networks would be in effect in compu-

FIG. 1. �Color online� A sketch expressing the principle to con-
struct the complex network. �a� A pattern �digit 6� in the pixel box.
�b� It shows how a definite vertex gets its connections according to
the pixel value and pixel coordinates of its relative pixel.
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tation and determines the topology of the network, the sparse
connected networks need much less computation time and
memory than fully connected networks.

Here we have introduced a spatial parameter � to get the
connection weights between pairwise vertexes. It is a con-
trollable parameter that can be selected empirically to get the
maximum accuracy ratio in recognition. It describes the in-
fluence range of a pixel site, if another pixel site is far away
from it, the connection between them reduces to zero. Too
large or too small influence range will decrease the accuracy
ratio, as it shall be seen later, the maximum accuracy ratio
always occurs on the same medium value. As shown in Fig.
1�a�, we illustrate a pixel site �with orange dots� and its cor-
relations �the orange lines which connect other pixel sites in
the pink box�. The influence range of that pixel site is cutoff
by �=4. Figure 1�b� shows the relative orange vertex con-
nects with other vertexes whose relative pixel sites are in the
influence range in the pixel box. The spatial parameter will
determine whether a vertex in the complex network would
connect with the orange vertex.

The correlation between two pixel sites is expressed by
multiplying their pixel value. For binary pixel value here, +1
stands for the black pixel and −1 stands for the white pixel,
we have 1�1= �−1�� �−1� and 1� �−1�= �−1��1. The cor-
relation between two pixel sites with the same pixel value is
1, and with different pixel value is −1. So even if we reverse
the color of that pattern, the weights between the relative
vertexes in the complex network remain the same. It states a
simple principle, whether the pattern is a black diagram on a
white background, or white diagram on a black background,
the structure of it stays the same. The vector expressing
method cannot reveal this principle.

Here each vertex has a color value ci to state the pixel
value of its relative pixel site. In complex networks, a mea-
sure is often given to a vertex to qualify its function. For
example, betweenness �28,29� may state the importance of
an individual in social networks, or the centrality �18,30�
may measure the frequency of a vertex being visited by ran-
dom walkers.

The prototypal network of a category is meant to repre-
sent the general structural characteristic of patterns in that
category. It neglects the variation of each individual pattern,
and only their common structural information should be ex-
pressed. Since those different patterns have no priority of
importance in that category, thus the simplest way to con-
struct the prototypal network is by averaging their weights
matrices. In the same way, we also obtain the vertex color of
the prototypal network. Such method can be improved with
Monte Carlo adaptation rule via the neural networks method
�7,8�, which would however take much more time in train-
ing. Here N denotes the Nth category, and n denotes the
amount of training patterns in this category.

wi,j
�N� =


wi,j
�n�


n
, �3�

ci
�N� =


ci
�n�


n
. �4�

As it shall be seen later �Figs. 3 and 4�, in the prototypal
complex networks, the clustered structures and asymmetric
strength distributions come naturally. The clustered structure
reveals the structure of that category, and the asymmetric
strength distribution reveals the different roles of vertexes in
the networks.

To classify the category of an unknown pattern, we need
to calculate the structural differences between the unknown
pattern and the prototypes. The category of the unknown
pattern is selected to be the one whose prototypal network
has the minimum structural difference. The weights matrix of
the unknown pattern is wi,j, the weights matrix of the Nth
category is wi,j

�N�, so the structural difference ��N� is calculated
as follows:

��N� = 

i
�


j

�wi,j − wi,j
�N��2��ci − ci

�N���
 . �5�

In formula �3�, the component ��ci−ci
�N��� denotes the

color differences of vertexes between the unknown pattern
and the Nth category. If we neglect the color information and
only consider the structure, we delete ��ci−ci

�N��� in this for-
mula, then there is no discrimination between whether it is
black diagrams on a white background, or white diagrams on
a black background. We may use such formula to recognize
the reversed colored patterns as well. It shall be seen later,
the main information for recognition is in the structures
rather than the colors.

Our model can be improved if one adds a neural classifier
after the complex networks layer. Instead of using prototypal
networks and calculate the structural difference between an
unknown pattern and the prototypes, the neural networks
layer would be used to recognize and classify the patterns
which now are represented as complex networks that de-
scribes the correlations between the pixel sites and their spa-
tial arrangements. There are some attempts to integrate com-
plex networks and neural networks together �31,32�. Their
idea is to add the adjacency matrix to modulate the synaptic
matrix of the neural networks, and study how the different
topology of complex networks affects the functions of neural
networks. Our work may inspire another way to integrate
complex networks and neural networks together, in which
complex networks layer intends to describe spatial correlated
patterns, and neural networks layer intends to classify those
complex networks. However, here our attention is only fo-
cused on the complex networks representation which de-
scribes the structure of the patterns, and study the interesting
properties within those complex networks. In doing so, the
computation time cost and memory cost would be much less
to get the same result than using some neural classifiers.

To verify and test our model, we apply it to recognize the
handwritten digits in the MNIST database �33� as an ex-
ample. The database is a subset of the NIST database which
is constructed from real-world digits written by Census Bu-
reau employees and high-school students. It contains a train-
ing set of 60 000 samples, and a testing set of 10 000
samples. The digits are centered in 28�28 pixel boxes. For
simplicity, we neglect the grey levels to reduce them to black
digits written on white backgrounds.
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Based on the 60 000 training samples to recognize the
10 000 testing samples, the maximum accuracy ratio reaches
more than 93% with six prototypes per category. If we only
consider the structures, the maximum accuracy ratio reaches
91%. This states that structures, not the color, are the key to
distinguishing different patterns. Whether it is either a black
graph on a white background or a white graph on a black
background, the structure rather than the colors determines
the pivotal information of that pattern. The result shows the
potential to apply our model in real-world pattern recogni-
tion.

The accuracy varies with different spatial parameter � in
recognition. As shown in Fig. 2, the accuracy peak always
occurs on the same medium value when averaging more than
one pattern. It has nothing to do with the amount of patterns
it averages. Either too large or too small value will decrease
the recognition accuracy ratio. As stated in the foregoing, the
spatial parameter limits the connections of a vertex in the
networks, according to the range of nearest neighbors of its
relative pixel site. The optimal connection number of each
vertex remains constant in recognition, it is insensitive to the
networks. It is similar to the phenomena observed in the
Hippocampal interneuronal network �18,34�, where the aver-
age number of synaptic contacts per cell is also constant
insensitive to the networks. The reason why the optimal con-
nection number is constant may come from the dynamical
process in the network, and it needs to be verified in the
future.

The strength of the weighted complex networks
�18,20,21� is defined as follows:

si
�N� = 


j=1

M1

wi,j
�N�. �6�

The strength of a vertex integrates the information about its
connectivity and the weights of the connections, and can be
considered as the natural generalization of the connectivity.

It is the natural extension of degree k �18,20,21� defined in
unweighted complex networks.

If we let the spatial parameter ��54 so that all vertexes
are connected in the complex networks, we get an approxi-
mate linear relationship between the strength and color of
each vertex in the prototypal networks �Fig. 3�.

The approximate linear relation states the general proper-
ties of patterns in each category, thus it provides us a way to
visually compare the topological similarity of each category
in this graph. The categories of digits are 0, 8, 2, 3, 6, 5, 9, 4,
7, 1 from the left-hand to the right-hand side, down to the
bottom. We can obtain that the digits 9 and 4 are more simi-
lar than any other digits, and the digits 0 and 1 are the most
different in these categories. Such result indeed accords with
our empirical experience as well. The approximate linear re-
lation also indicates that the tendency of vertex with strong
strength is apt to have negative color value, and vice versa.

We visualize the prototypal networks to see their connec-
tions, and to see whether their topology reveals the general

FIG. 4. �Color online� The clustered structure of the 10 proto-
typal networks. We let each nonzero weights value add 1.5 to lay
out the networks with similarity weights. The color of each vertex
also is marked. For clarity the connections between vertexes with
negative weights are hidden.

FIG. 2. �Color online� The accuracy ratio varies with different
spatial parameters �. Each category averages n training samples
from 1 to 500, and the spatial parameter � varies from 1 �all of the
vertexes are isolated� to 55 �all of the vertexes are connected�.

FIG. 3. �Color online� The relation between strength and color
of each vertex in the complex networks.
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structural information of each category. The Pajek program
for large network analysis is used for visualization here. As
shown in Fig. 4, the clustered structures appear naturally in
the prototypal networks.

These clustered structures indeed reveal the structures of
handwritten digits of the 10 different categories, from digit 0
to digit 9. The color parameter also helps in reconstructing
the structures of different categories. In biology, there are a
lot of physiological experiments indicating that neuronal sys-
tems display such clustered structures as well, such as in cat
visual cortex and human functional brain networks �35–37�.
However, the origin of such clustered structures is still un-
explained. Our study may provide a possible explanation to
understand that mechanism, where the clustered structure of
neuronal system comes from the structure of the knowledge
it learns. Since the information the neuronal system receives
is clustered with a definite structure, so that in evolution the
neuronal structure would finally reveal such structure.

To investigate the connections and hierarchy of each ver-
tex in the prototypal networks, we consider the strength dis-
tribution here. The strength of a vertex integrates the infor-
mation about its connectivity and the weights of its links.
The strength distributions of the prototypal networks are
shown in Fig. 5, where p�s� denotes the fraction of vertexes
with strength s in the 10 prototypal networks. Their distribu-
tions are similar in that there are two peaks with different
heights in the curves.

Such kind of asymmetric distribution is very interesting,
because usually the distribution is either exponential distri-
bution with only one peak, or power-law distribution without
any peaks. The reason why there are two distribution peaks
can be explained, such that there are two kinds of different
roles of vertexes in those networks. A vertex is either a dia-
gram vertex or a background vertex, and it is the diagram

shown in the background. The diagram vertex would have a
small strength value, since it is mainly surrounded by the
background vertexes with minus weights. The first peak is
formed by their strength distribution. Equally, the second
peak is formed by the strength distribution of the background
vertexes as well.

The diagram vertexes with smaller weights are more im-
portant than the background vertexes in recognition. Such
asymmetric distribution would enable the prototypal net-
works to be resistant to random failures �18,30,38� as the
scale-free distribution. To show the asymmetric distribution
indeed brings high robustness in the prototypal networks, we
destroy the connections between the background vertexes
�let wi,j =0 if both ci and cj are negative� in the prototypal
networks previously used in recognition. In doing so, about
30% vertexes have been wiped out and 85% vertexes are
more or less affected. The connections of the wiped out ver-
texes are all cut off which makes those vertexes take no
effect in recognition. Only 15% vertexes remain with their
connections intact after such destruction. However, the accu-
racy ratio only decreases form 93% to 90%, so that the pri-
mary function of those networks still remains. It is similar in
the biologic neuronal systems, that they could keep the same,
through degraded function after suffering the destruction of
many neurons and their connections �35,39�.

Here we have shown the basic properties of using the
complex networks in patterns recognition. In this model,
each pattern is attributed to a weighted complex network to
express its structure. A prototypal network is constructed
across multiple patterns in the same category, and it repre-
sents their common structural characteristics. These proto-
typal networks are used to recognize an unknown pattern. As
an example, we apply this model to recognize the handwrit-
ten digits, and the result shows the potential for real-world
application. A controllable spatial parameter is introduced to
get the optimal recognition accuracy, and it remains constant
insensitive to the amount of training samples. We have dis-
cussed the interesting properties shown in the prototypal net-
works. An approximate linear relation is found between the
strength and color of vertexes, and we can use this relation to
compare the common topological similarity between differ-
ent categories. The clustered structure of the prototypal net-
work reveals the structure of its relative category. The
strength distribution possesses two asymmetric peaks, and
such distribution brings high robustness in the prototypal
networks. Our model may also provide us with some new
sights to understand the structures and mechanism of bio-
logic neuronal systems. We hope our work will further
stimulate interdisciplinary studies in complex networks.
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Yue Zhang for help with the preparation of the paper. This
research was partly supported by National Basic Research
Program of China �973 program� �Contract No.
2007CB814800�, and National Natural Science Foundation
of China �Contract No. 10475067�.

FIG. 5. �Color online� The strength distribution of the 10 proto-
typal networks. The precision of strength is 80%, that if a vertex

with strength s2 and
�s1−s2�

s1
�0.8, then we label it as the vertex with

strength s1 as well. Different curve stands for different category,
from digit 0 to digit 9.
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